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Summary

Part I. Classical Laser

In this paper a completely classical model for laser
action is discussed. An active medium consisting of clas-
sical anharmonic oscillators interacts with a classical
electromagnetic field in a resonant cavity. Comparison
with the case of a medium consisting of harmonic oscillators
showsthe significance of nonlinearities for producing self-
sustained oscillations in the radiation field. The results
for the classical model are found to be similar to those
for a semiclassical model of the ammonia beam maser.
The conclusion is that laser action is not intrinsically a
quantum mechanical effect. The classical laser theory as
given in this paper can also be applied to the case of the
electron-cyclotron maser.

Part II. The Effect of Velocity-Changing Collisions on the
Output of a Gas Laser.

A theoretical model for the pressure dependence of the
intensity of a gas laser is presented in which only vel-
ocity-changing collisions with foreign gas atoms are in-
cluded. This is a special case where the phase shifts are
the same for the two atomic laser levels or are so small
that deflections are the dominant effect of collisions.
A collision model for hard sphere repulsive interactions is
derived and the collision parameters - persistence of
velocity and collision frequency - are assumed to be inde-
pendent of velocity. The collision theory is applied to a
third order expansion of the polarization in powers of the
cavity electric field (weak signal theory). The resulting
expression for the intensity shows strong pressure depen-
dence. The collisions reduce the amount of saturation and the
laser intensity increases with pressure in a characteristic
fashion. It is recommended that the best way to look for
this effect is to make the measurements under conditions of
constant relative excitation. The velocity-changing
collision theory is also applied to a high intensity laser
theory. The results for the velocity dependence of the
population inversion are evaluated in the rate equation
approximation. The equations contain terms not considered
by Smith and Hgnsch in their work on th8 cross-relaxation
effects in the saturation of the 6328 A neon laser line.
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...all the knowledge on earth will give me nothing to
assure me that this world is mine. You describe it to me
and you teach me to classify it. You enumerate its laws
and in my thirst for knowledge I admit that they are true.
You take apart its mechanism and my hope increases. At the
final stage you teach me that this wondrous and multi-
colored universe can be reduced to the atom and that the
atom itself can be reduced to the electron. All this is
good and I wait for you to continue. But you tell me of
an invisible planetary system in which electrons gravitate
around a nucleus. You explain this world to me with an
image. I realize then that you have been reduced to poetry:
I shallnever know.

Albert Camus, The Myth of Sisyphus
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I. INTRODUCTION

In recent years, there have been many advances in the theory

of the laser. For a gas laser the active medium was treated

as a quantum mechanical ensemble of two level atoms and the radia-
1l2

tion as a classical electromagnetic field. Scully and Lamb have

generalized this theory by treating both atoms and fields quantum

mechanically. Other authors have given alternate formulations

3of this theory. Results of these calculations have been in good

agreement with experiments, and except for possible refinements,

the understanding of laser theory appears to be satisfactory.

There is, however, a fundamental question still to be con-

sidered. Is the operation of the laser a result of quantum

effects (an avalanche of photons caused by stimulated emissionS)

or can the laser be described completely in classical terms?

(Maxwell's equations for the field and Newton's equations of

motion for the medium)

The laser is an example of a self-sustained oscillator.

Such devices are well known in electronics. The first of these

devices for which a theory was developed was the triode oscillator.9

In that case, the energy required for sustaining oscillations was

provided by a battery. The nonlinear characteristics of the

triode-battery system served to provide a negative nonlinear

resistance which could drive an L-C circuit into a state of sus-

tained oscillations.
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In this paper, a totally classical model of a laser is

investigated. The possibility of such a system was first

6discussed by Gapanov. The model here was independently

suggested by one of the authors in a later publication.

It is shown that the essential features of laser action

arise from nonlinearities in the active medium and not from

quantum effects. The calculation closely parallels the

semiclassical theory of Ref. 1.
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II. MODEL FOR CALCULATION

8The--model to be used is similar to the one used by Helmer

and Lamb 9 to describe the ammonia beam maser. An unpolarized

beam of classical molecules passes through a resonant radiation

cavity, and interactswith the radiation field. The induced

polarization of the beam of molecules is calculated from the

dynamics of the interaction. It is required that this polariza-

tion be the source for the radiation field. The equations for

this self-consistency requirement will be introduced in the

next section.

The following simplifying assumptions will also be used:

(I) The mechanical oscillators move with a single, constant

velocity through the cavity in a uniform one-dimensional beam

perpendicular to the electric field.

(II) Only one cavity mode is considered and the spatial variation

of its electric field along the beam will be neglected. Loss

in the cavity is described by a phenomenological Q-factor.

(III) The mechanical oscillators are represented by a particle

of mass m and charge e vibrating in one dimension parallel

to the electric field in the cavity.

(IV) Internal damping of the mechanical oscillator is neglected.

(V) The mechanical oscillators enter the cavity with a fixed

internal energy but with random phase with respect to the

electric field.

The geometry of the model is shown in Figure 1.
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III. SELF-CONSISTENCY CONDITIONS

The following discussion, based on Maxwell's equations,

can be found in Ref. 1 in greater detail. Only one mode of

a high Q electromagnetic resonator is considered. Let its

frequency bg ( in the absence of an active medium. The

electric field is taken in the form

(1) E(z,t) =A(t) U(z)

where U(z) satisfies the cavity mode eigenvalue problem.
· .:~

Maxwellts equations can be combined to give -

(2) A+ (e)A + A = _(2 )

P is the polarization of the medium and a is a fictional conductivity

adjusted to give the required damping of the radiation field in

the cavity, i.e.,

e v
(3) 0= o

Q

Further assume that the electric field and polarization

can be taken in the slowly varying amplitude and phase approx-

imation
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(4a) A(t) = E(t) cos (vt + cp(t))

(4b) P(t) = C(t)[cos[vt + p(t)] + S(t) sin[vt + cp(t)]

where v is a constant frequency yet to be determined. Inserting

(45 and (4b) into equation (2) and neglecting small terms

in E, etc., the following self-consistency equations are

obtained

-i 2
(5a) 'E 1 E-' (v )S

(5b) (v + O- )E =- (v )C.
0
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IV. POLARIZATION OF THE MEDIUM

Let the internal motion of the mechanical oscillator

in the presence of the cavity electric field be x(t 0, ;t).

The oscillator entered the cavity at z = 0 at time t with
0

phase 8ao with respect to the electric field A(t). The

oscillators move with a constant single velocity so that they

are at z = v(t-t) at time t. The dipole moment p of each

oscillator is

(6) p(toe;t) = ex(to, eo;t)

-The macroscopic polarization of the medium is obtained by

summing up contributions of individual oscillators. For a

collection of oscillators that entered the cavity with phases

between e
o
and eo0 + de0 around time to, the contribution to

the macroscopic polarization dP(80 ;z,t) (dipole moment/unit

length) is

(7) dP(%0 ;z,t) = N p(toV e0;t) deo 0/2r

where N = the number of molecules/unit length in the cavity and

the entry time to replaced by

(8) to= t - (z/v)
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Summing the contributions from all initial phases 90 gives

(9) P(z,t) = (N/27) I0 de0p(t'e0 ;t).

The component of the polarization which is the source of

the cavity radiation is found by projecting P on the uniform

cavity mode. Thus,

FL dzP(z,t)(10) P(t) = (l/L) fOt

where L is the length of the cavity.

I

I

I
i
i
i
I

I

I
i
i
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V. LINEAR OSCILLATOR

-The equation of motion of a linear oscillator of frequency

w in the presence of the assumed cavity field is

(11) x + w2 x = [eE/m] cos(vt)

--The phase of the electric field c has been set = 0. The

phase of the oscillator is then measured relative to that of the

cavity field. The solution of (11) subject to the initial con-

ditions x(t) = (to) = O is

(12) x(t) = A0 cos(w(t-to ) + 0 + [eE/m] (w2._ 2)- 1

X[cos(vt) - ( + V) cos(w(t-to0 ) + vto )
2w

- (w- v) cos(w(t-to) - Vto) ]

2w 

From equation (8) the polarization of a collection of

oscillators with initial phase E0 is

(13) dP(90 ;zt) = (N/2r)e[Aocos((w-v) t - wto + ) - [eE/m]

X (w2 - v2 )-1 (1 _ cos((w - v)z/v))] cos (vt)

+(N/2r)e[-Aosin((w- v)t - wto + o) + [eE/m]

X (w2 - v2 )
-
1 sin((w -v)z/v)] sin (vt)

where nonresonant terms have been neglected.

Equations (9) and (10) give



-10-

(1) ~) [e2 Em 2 21-l(14) P(t) = LNe2E/m] (w2 - v 2) 1L - sin((w-v)T) ] cos (vt)
T(w-v)

+ [2Ne2 E/m] (w2 - v2 )-l sin2 (w-v)T/2) ] sin (vt)
T kw- v)

--where

(15) T = L/v

is the time spent by a molecule in the cavity. Comparing (14)

with (4b), and letting v be close to resonance,the coefficients

C and S can be determined.

2
(16a) C = [Ne E/2mvJ (w-v)

-
2 T-l[T(w-v) - sin((w- v)T)]

2 2
(16b) S = [Ne E/mv] (1/T) sin ((w-v)T/2)

(r.v)2

The amplitude equation (5a) gives the following result for the

cavity field

2 2

(17) E(t) =- + (Ne2 /eCoM ) sin2 (((-v)T/2) ] E(t)
T(w-v)2

Equation (17) shows that an injected stream of ran-

domly phased harmonic oscillators will always increase the

damping of the field in the cavity. Steady state oscil-

lations cannot be achieved with such a medium. The familiar

result 10 that a randomly phased linear oscillator can only

absorb energy from an electric field has been rederived.
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If the phases of the oscillators before entering the

cavity had been properly correlated to the electric field,

S as calculated from (13) with a constant 0o could have been
0

negative for suitable transit times T. That is equivalent to

coupling a signal generator to the resonant cavity. The prob-

lem under consideration, however, is to construct a model

for a generator.

In order to see more clearly why the harmonic oscillator

will not sustain oscillations in the radiation field, evaluate

(12) for x(t) at resonance (w = v)

(18) x(t) = Ao cos(w(t - to) + e0) + [eE/2mw] (t - t) sin(wt)

The power absorbed by the oscillator is

(19) dd= - F(t) ±(t) where F(t) is the force on the oscillator

Using (11), (19) becomes

(20) d = [weEAo /2] sin(-wto0 + 0o) + [(eE)2 /4m] (t-to)

where high frequency 2c terms have been neglected. The

oscillators that are initially phased to gain energy from the
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electric field will do so for all times. The others initially

lose energy, but eventually gain. The average of (20) over the

injection phase e is positive definite which corresponds to

the result derived earlier for the entire ensemble.
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VI. NONLINEAR OSCILLATOR

The frequency of oscillation in the case of a nonlinear

or anharmonic oscillator is amplitude dependent. Consider

the situation where such an oscillator is introduced into

the resonant cavity at an amplitude corresponding to a frequency

slightly lower than the cavity frequency (See Figure 2).

As in the case of the harmonic oscillator, upon entering the

cavity some oscillators will gain energy from the field and some

will lose, depending on the phase. As any oscillator gains energy

it gradually goes out of resonance with the electric field in the

cavity since the frequency is amplitude dependent. The energy

absorption is thus severely limited in comparison with the linear

oscillator.

Those oscillators that initially lose energy come closer

to resonance with the driving field (and may even pass through

resonance) and could lose a substantial amount of energy

before rephasing or being removed from the cavity. Under certain

conditions a net loss of energy to the cavity field is therefore

possible.

This rough description gives some motivation for investigating

a nonlinear oscillator as a medium for laser action.

The model for a classical, nonlinear oscillator will be

the familiar but nontrivial case of a simple pendulum of mass m,

length a, and charge e. The equation of motion is
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2(21) x + aw sin(x/a) = [eE/m] cos (vt)

where w denotes the small amplitude resonant frequency.

Using the series expansion of sin(x/a) to third order (21)

becomes

(22) x + w2(x - (x3 /a2)) = [eE/m] cos(vt)

which is known as Duffing's equation. There is extensive

literature on the problem. There are subharmonic solutions,

11stable and unstable oscillations, and Jump phenomena. The

following treatment corresponds most closely to that of

Bogoliubov and Mitropolsky. Assume a solution with slowly

varying amplitude and phase which can be expressed as a Fourier

-series in odd harmonics of the driving frequency v. Let

(23) x(t) = E B2 n+l:(t)cos[(2n+l)vt + 02n+l(t)]
n=O

where the amplitudes B2n+l and phases 92n+ are slowly varying2n+l 2n+l

in comparison with cos(vt). Only the component of the polari-

zation varying at the fundamental frequency v is of interest

in this problem. Since numerical analysis has shown that the

most significant elements of the motion vary at this frequency,

(23) is replaced by
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(24) x(t) = B(t) cos (vt + e(t))

Inserting (24) into (22), equating coefficients of cos(vt + e)

and sin(vt + 9) and neglecting terms inB,B2, e,2, Be (slowly

-varying amplitude and phase approximation) yields two coupled,

first order differential equations for B(t) and F(t)

(25a) B = -[eE/2mv] sin e

(25b) 9 = (2- V
2
) _ 2B 2

2v 16va2
- [eE/2mv] B-1 cos e

Equations (25) can be rewritten in terms of a dimensionless force

parameter

-(26a) G = [eE/2mawv]

and dimensionless variables

(26b) A--= B/a

for amplitude and

(26c) -r. = t

for time as

(27a) dA/dr = -Gsin 9
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(27b) de/d. = A -([A2 /16v)- tG/A] cos e

where

(28) A = ( 2 _ v2 )/2vw.

When G = 0 the solutions of (27) are

(28a) A(r) = Ao = Bo/a

(28b) 0(T) = -(i A2 T + %)

so that the motion of the oscillator is

(29) x(t) = Bo cos[E(l - ({6 )A2 )t + e0 ]

I 2
The familiar (1-)Ao correction to the frequency of a simple

pendulum is confirmed by this analysis.

Some of the properties of the solutions of equations (27)

can be found by investigating the stationary-- points. These

occur when dA/dT =0 and de/dT = 0 giving stationary solutions

(30a) e = nr for n = ±1, ±+2, +3, ...

and A determined as a root of the cubic equation

(30b) -.- A[A - cA 2/16v] - (-1)nG = 0. for n = +±1, ±+2,
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Without loss of generality, consider only the solutions

with A > 0. Figures 3a and 3b show the solutions of (31b) for

A > 0 and A < 0 respectively. For A > 0, Fig. 3a, there are three

possible stationary points: a and b with 9 = 0,2r,..., and c with

e = i,3r,... By linearizing equations (27) about these points,

a and c are found to give stable solutions and b to give an

unstable solution. When G > [4A/313 /2(G2 in Fig. 3a), a and b

disappear leaving c as the only possible stationary solution.

When A < 0, Fig. 3b, only one stationary is found with the

same stability as point c in Fig. 3a.

Equations (27) have been solved numerically on an IBM

7094 computor using a predictor-corrector method.1 2 Figures

4a-4c exhibit the solutions in a phase diagram where 3(t) is

plotted as a function of A(t). The relationship between the

amplitude and phase of the oscillator can be used to determine

some important qualitative aspects of the motion under the

influence of a driving field.

In Fig. (4a), A >0 and G < [4A/3]3/2 . The stability

properties of the stationary points a,b,c are easily seen.

Figure (4b) corresponds to A > 0 and G > [4A/3]
3
/2 while in

Fig (4c) A < 0. In each of the latter two cases only the

one stable point c is found.

Figures 5 show the time evolution of a collection of Duffing

oscillators which enter the radiation cavity at a fixed ampli-

tude, Ao = 0.32, but with random phase. The amplitude A is an
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indicator of the energy of the oscillator (i.e., energy =

w2 (2 1( - (2-)A 4])o The rough description of the nonlinear2 a2[ (-)A2 I 41

oscillator given at the beginning of this section can be made

more explicit by examining Figs. 5. In Figure 5a, the

oscillators have been in the cavity for a time wt = 150.

The oscillators with initial phase greater than v are increasing

in amplitude while those with initial phase less than v are

decreasing in amplitude. By wt = 900, Fig. 5d, most of the

oscillators have lost energy. Those oscillators that initially

gained energy have "rephased" so as to lose energy. Those

oscillators that initially lost energy have not yet returned to

their original amplitude. If the oscillators are removed from

the cavity at such a time, a net transfer of energy to the

cavity radiation field can be expected. Therefore, a beam of

nonlinear molecules injected with a suitable energy and removed

from the cavity at the proper time could produce laser action.

The next section treats equations (25) to first order in

the driving field. That analysis will find a threshold condition

for the onset of laser oscillations and frequency pulling effects.
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VII. WEAK SIGNAL THEORY

To first order in the force parameter G, the amplitude and

phase of the Duffing oscillator are

(31a) A = A(O) + G A( 1 )

(31b) 9 = (
0
) + G 9(1)

Using (31) in the differential equations (27) gives

(o)
(32a) dA /dT'r= 0

(32b) dA( )/dr = -sin 9(0 )

(32c) d9(O)/dT = A - A (O)2/16V

(32d) de(1)/dT =wA(O)A(l)/8v - (1/A ( 9 ) ) cos 9( )

with solutions for w t v

(o)
(33a) A = Ao = constant

(33b) A(O) = ((- v)(t-t) + 9o

(33c) A( 1) = [W/(P-v)][cos((W-V)(tto ) + 80) - cos 9 ]
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(33d) e(1)= W3 Ai cos 80o(t-t W E1 + 2A2
( ) - ( [1 + A-V) o S-o ( -v V0~~~~~~

X [sin (p-v)(t-to) + %) - sin 0o]

where

(34) ., = o( - Ao2 /16)

is the free oscillation frequency of the injected oscillator.

Using equation (9) the polarization of a collection of

oscillators with initial phase 80 is

(35) dP(Oo ; Z,t) = [N/2r]ex(t -v' -o;t)dO

= [Ne/2r] A[cos 0 cos vt - sin 0 sin vt]dOo

Identifying the coefficients of sin vt and cos vt gives

(36a) dC(0o;z,t) = [Ne/2r] A cos 0 deO

(36b) dS( 90;z,t) = -[Ne/2r] A sin 0 dOo

The first order contribution to C and S can now be found by

using the solutions (33)

(37a) dC(l)(eo;z,t) = [Ne/2][A cos ( ) + G(A(1) cos ( O)

- Ao( )sin e (0)OA 8(~sineGM)] deo
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(37b) dS(l)(80 ;z,t) = - [Ne/2r][Ao sin O(0 ) + G(A(l)sin O( O )

+ Ao0e(l)cos 9(°))] deo

Averaging equations(37)according to the prescription of equations

(9) and (10) gives

(38a)2(38a) C(1 ) = [wNeaG/(p-v)2][4%-v) - '(c-b) +-(w-v)] sin((p.-v)T)
Ttr-v)

+ (w-A) cos((±-v)T)]

(38b) S( 1 ) = [wNeaG/(p-v)2 ][(w-i) sin((v-p)T) - 2[(z-,) + (X-v)]
T(v-p.)

x sin2 ((v-p)T/2)]

In the limit of a linear oscillator, w=-, and equations (38) are

identical to (16).

Using (38b) in the electric field amplitude equation (5a)

the conditions necessary for the onset of laser oscillations

can be determined. At steady state, E = O and

(39) 1/Q = Ne '4d sin2((v.-P)T/2) - 2sin2((v-~)T/2)
2mv.e 0 T(v-p)

-Td sin((v-p)T)}
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where

2
(40) d = (w-p) A0 /16

is a measure of the initial excitation of the oscillator.

For a given cavity transit time T = L/v, the self-consistency

condition (39) can be satisfied within finite frequency bands.

If the R.H.So of equation (39) is positive, then N and Q can

be adjusted to give threshold. Figure 6 shows a plot of the brack-

eted expression on the R.H.S. of (39) as a function of

(41) t = (v-t)T/2

for various values of the parameter Td. The domains where the

R.H.S. of (39) is positive occur when

(42) n 2 +(42) nFr * ~~

-nor 2 k 2n where n = 1,2,3,...

The angles n and *n are solutions

(43) tan(Ot) = (Td), i
(Td - *)

of the transcendental equation
,.. - .: -. '.'.. :. ~.%.

·.. -.

For the remainder of this paper, only the region rv a v 2' 
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will be considered. This corresponds to the widest frequency

band which gives a self-consistent solution and is closest to the linear

resonance v = X (frequency for small amplitude oscillations). The

frequency band to be considered is then

(44) vmin j v <(2F/T)+ i

where min = + 2 t/T

Figure 7 shows a plot of the width of the above region

as a function of transit time in the cavity. There is a

linear variation for short transit times and 1/T dependence

for long exposures. Figure 8 is a plot of vmin as a function

of transit time. For this frequency band, Vmin is always

greater than p. Shorter transit times require that the Duffing

oscillators be sent through a cavity tuned to a higher frequency.

As the transit time increases, the driving frequency must be

proportionally decreased so that the oscillators do not begin

to absorb energy.

Inserting (39a) into the "frequency determining" equation

(5b) at steady state gives

(45) (v-n) =-(v/2e0 )[Ne2 /2m(v-P)
2

][(a-v) -(d + (X-v)) sin((v-.)T)

+ d cos((v-g)T)]
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-Using N at threshold in (41) gives

(46) (v-n) = vT [(ro-v) - (d + (v) sin((v-p)T) + d cos((v-p)T)]

[ -2(d + (X-v)) sin2 ((v-p)T/2) + Td sin((v-p)T)]

Figure 9a is a plot of the R.H.S. of (46) as a function of (i-v)

for oT = 800 while Figure (9b) has wT = 200. For short transit

times (e.g. Figure 9b) the frequency is double valued. Thus

it is possible to have two different types of oscillation under

the single cavity mode. However, the analysis here is only of a

single frequency. The equations of motion whould have to be

solved with a two frequency driving force in order to determine

whether they could coexist. Therefore,the analysis will be

restricted to longer transit times such at wT = 800 (Figure 9a).

The frequency is then single valued and the pulling has a well

defined linear region. To examine linear pulling, expand equation

(42) about the zero point, v = v0, giving

(47) (v-) = -.g(voT)(v-vo0 )

where

(48) g = voT F(voT) where F is a complicated dimensionless function.



S is known as the stabilization factor which apart from F

is the ratio of the cavity bandwidth (w/Q) to the transit time

band width (1/T) of the molecules

i

i

,tj
i
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i
I
i

I
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i
i
i
I
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I
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VIIIo COMPARISONS WITH AMMONIA BEAM MASER WEAK SIGNAL THEORY

It is instructive to compare the classical theory with one

in which a simple, quantum mechanical, nonlinear oscillator is

used. The results of the Helmer( 7)-Lamb( 8 ) small signal theory

of an ammonia beam maser will be used. The mechanical systems

are two level atoms with energy difference hw injected into the

resonant cavity in their upper state. With the simplifying

assumptions of section (II), equation (5a) at threshold gives

(49) 1/Q = N~ 2 2 sin2 ((v-w)T/2)

' So (v-_) 2 T

and the frequency equation (5b) becomes

(50) (va) = - Np 2 v [( ) - sin((v-) )T)]

where F is the dipole matrix element for the radiative transition.

The similarity between equation (39) and (49) and (45) and (50)

13~ 2
should be noted.3 The second sin term in the expression for the Duffing

oscillator (39)- s always negative. That term is exactly the

same as the total expression for the linear oscillator, Eq. (16).

The other two terms in (39) combine to make the expression positive

under certain conditions. They are both proportional to d=(W-4

which is a measure of the non-linearity of the oscillator.
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IX. STRONG SIGNAL THEORY

It has been seen thatj at least for small signals, a completely

classical system provides reasonable model for laser action. An

unpolarized beam of anharmonic oscillators of fairly high ampli-

tude is injected into a radiation cavity and the conditions for

the buildup of laser oscillations are not very different from

those of a simple quantum mechanical model.

The nonlinearities of molecular medium play an essential

role in that they provide for a coupling between the amplitude

and phase of the mechanical oscillator in the presence of an

electric field. This coupling, not present in the linear

oscillator, allows the phases to readjust giving the medium

a net active polarization.

The next problem is to determine the intensity and frequency

of the classical laser. Ideally, the perturbation expansion in

the dimensionless parameter G could be continued to high orders.

Unfortunately, the amount of algebra involved is enormous. Using

a computer,however, it was relatively easy to use numerical

methods to calculate the polarization of an ensemble of Duffing

oscillators.

The technique employed was to solve equations (27) simul-

taneously with the same initial amplitude A for a set of
0

equally spaced initial phases between 0 and 2r. The phase averages,

equation (9) of S and C were found using Simpson's rule at

each time. Since the molecules move at uniform velocity, the
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-mode projection of equation (10) is Just the time average. In

terms of the numerical procedure this time average is just the

cummulative sum for previous times divided by the total elapsed

time. For small amplitudes, these coarse phase and time averages

are in excellent agreement with the first order theory.

Figure (10) is a plot of -S as a function of G for various

values of A = (w-v)/w with wT = 800. Figure (ll) shows a plot

of -C as a function of G. The amplitude equation at steady

state (E = 0) gives

(51) E/Q = [G/Q][2mwva/e] = -(l/eo)S(G)

The intersection of a straight line through the origin in Fig. lO

with slope (l/Q)[2mwva/e] with any one of the -S curves will

give an operating point of the laser. Figure 12 is a plot of a set

of such intersection points showing E2 as a function of v-p for

several values of Q. Thus, the theory has given the intensity

as a function of v-p..

Figure 10 shows the characteristic behavior of saturation

phenomena: -S increases linearly for small amplitudes and then

curves back downward for larger values of the electric field.

The gain (-S) becomes negative at very high amplitudes.

From the values of the electric field obtained for the

operating points and the numerical values of C(E), the frequency

of the laser can be determined. Figure (13) is a plot of C(E)/E



-29-

as a function of (v-p) for different values of Q. The form

C(l)(E)/E of Fig. 9a is also included to show the pulling is

apparently linear.

The next section will show that the classical laser theory

can be applied to a physical problem of the electron-cyclotron

maser.

II
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X. ELECTRON-CYCLOTRON MASER

14The electron-cyclotron maser 4 is an example of a real

physical system for which the classical laser theory is applicable.

This oscillator uses a system of energetic free electrons in a

dc magnetic field (Hz) field which undergo radiative transitions

in a microwave cavity. In quantum mechanical terms, the transitions

are induced between adjacent Landau levels w where
n

(52) wn = mc2 [(1 + 2(n+l/2)hw/mc2)1 /2- 1)

with

(53) w = eHz/mc (cyclotron frequency)

For slightly relativistic electrons (~ 5Kev) and for typical

laboratory magnetic fields (Hz -2000 gauss) the relevant

quantum numbers are of the order of 108 (i.e., 10 t = 5Kev).

A classical treatment of this problem should be used for such

high quantum numbers.

Consider electrons moving in a uniform magnetic field H
Z'

in a rectangular microwave cavity. Assume a TE mode in the

cavity with the dc magnetic field Hz perpendicular to the

electric field. Neglect the transverse spatial variations of

the cavity mode and the rf magnetic fields. Also, assume that
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most of the electronic energy is in its transverse motion (i.e.,
0* .

x, y >> z)

The equations of motion of an electron with charge e and

mass m injected into a cavity according to the above scheme

are

0 .

(54) d[y mx] -eH

z

y =eE

x

(55) d [ y my ] + eHz x = eEy
dt c

where

(56) [1 (x2 + y2yc2-l/2

As in the case of the Duffing oscillator, let Ex = E cos vt

and let E = 0. Integrating (55) gives
y

(57) y = -eHzx
ymc

Substituting (57) into (54) gives

(58) d[ + e2 zx eEcos(vt)
2-

.ymc

I
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Assume the following solutions for x(t) and y(t) for

single mode operation

(59) x(t) = r(t) cos(vt + e(t))

y(t) = -r(t) sin(vt + e(t))

where r(t) is the radius of the orbit of the electron and r(t)

and 0(t) are taken in the slowly varying amplitude and phase

approximation. Neglecting terms in r , r , re, , and for

slightly relativistic electrons.

2 2(60) y + r2v

2

2c

(61) y r rv2
c2c

Using (59), (60), and (61) in (58) the following first order

differential equations for r(t) and e(t) are obtained

(62) r =-G(l - r2 v2 )sin a
c-

(63) = 2_ 2 r2 v(W2 + v2 ) Grc os 8
2v 2

where G = [eE/2mv]

Since r2v2/c2 is small compared to unity in (57), (62) and (63)
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are identical to the equations (25) for A and G in the Duffing

problem.

(64) r = -G sin e 

(65) e = 2_- 2
2V

- r2 v(w2+v2 ) - Gr 1 cos e

4c2

The electron-cyclotron maser can therefore be treated using

the theory given in the last section.
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XI. SUMMARY

A totally classical model of a laser has been treated,

in which no mention has been made of photons or stimulated

emission. A beam of randomly phased classical anharmonic

oscillators passes through a resonant cavity and gives up energy

to the radiation field. Nonlinearities in the medium are essential

for producing self-sustained oscillations. A medium consisting

of randomly phased harmonic oscillators (linear medium) can

only absorb energy from the radiation field.

This model has been used to calculate the intensity and

frequency of the resulting laser. The theory can be applied to

Hirschfield' felectron cyclotron maser since extremely high

quantum numbers are involved.
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Figure Captions

1. Geometry of the classical laser. A one dimensional beam of

molecules moves through a resonant radiation cavity with velocity v.

The direction of internal oscillation of each oscillator (x axis) is

parallel to the electric field.

2. Anharmonic oscillator potential. The frequency of oscillation is

amplitude dependent. The oscillators are injected into the cavity

with amplitude Ao and corresponding frequency . = p(Ao). This gives

an energy slightly higher than if they were oscillating at the

cavity electric field frequency v > A. Depending on the initial

phase, some oscillators gain energy from the field and move away

from resonance while others lose energy and move toward resonance

with the electric field.

3a.Plot of A(A - A2 ) for A > O. The intersection of this curve

16v
3/2

with horizontal straight lines of ordinates JG1l < (4A/3) give

stationary points a, b, c. The intersection with -G2,

IG2 1 > (4A/3) gives only stationary point c.

3b. Plot of A (A - o A2 ) for A < O. The intersection with

16v

horizontal line of ordinate -G1 gives only one stationary point c.

4a. Duffing phase plot with G = 10
-

4 and A = 4.625 X 10l3 .

Solutions of Eqs. (27) where 0 is plotted as a function of A with
3/2

A > 0 and G < (4A/3) . The stationary points a and c are stable

while point b is unstable.



-4 4b. Duffing phase plot with G = 6.0 X 10 4 and A =4.625 X 10 3.

Solution of Eqs. (27) where e is plotted as a function of A for
3/2 The only stationary point is c.

A> o and G > (4A/3)

-4 34c. Duffing phase plot for G = 10 and A = -10 -3 Solution of

Eqs. (27) where 9 is plotted as a function of A for A < 0. The

only stationary point is c.

5. Time evolution of Duffing oscillators. Solutions of Eqs. (27).

9 (modulo 2w) is plotted as functions of A stopped at times

r = 0, 300, 600, 900, 1200, 1500. Fifteen oscillators start at

equally spaced initial phases between 0 and 2w with amplitude

Ao5 0.32 and G = 4.0 X lO
-
4 and A = 3 X 10

-
3.

6. Plots of y = 2 (Td - ) sin2 - (Td) sin2t

where 4 = (v-p)T/2 for Td = 0, 1, 2. The parameter d = - p of

Eq. (40) is a measure of the injection energy of the oscillators.

The ranges where y is positive give self-consistent solutions of the

threshold condition equation (41).

7. The dimensionless width of the first frequency band of laser

oscillations (vmax - min)/a is plotted as a function of the

dimensionless transit time afT in the cavity.

8. The minimum frequency of laser oscillations vmin is plotted

as a function of the dimensionless transit time for the first band.

For large T, Vmin 

9a. Frequency pulling. A plot of Eq. (46) as a function of v for

WT = 800. Intersection with the straight line (v - 0) gives the

operating laser frequency. The quantity (v/2Q)1(C(1 )/S(1 )) is

an abbreviated form of the r.h.s. of Eq. (46).



9b. Frequency pulling. A plot of Eq. (46) as a function of v for

CT = 200. In this case the laser frequency is double valued. The

stability properties of these oscillations are yet to be determined.

10. -S plotted as a function of G for strong signals for various

values of A' = 10 A with aT = 800. Intersection of the

curves with the straight line -S = (2mwva/e)(G/Q) will give the

laser operating points as a function of A.

11. -C plotted as a function of G for strong signals for various

values of At= 103 A for iT = 800.

12. Laser intensity I as a function of (V - A) for various values of Q.

13. Plots of C(E)/E as a function of v for strong signals and various

values of Q. Intersection with the straight line (v - Q) gives

the laser frequency. The dashed curve shows C(E)/E of Eq. (46)

in the first order theory for comparison.
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PART II: THE EFFECT OF VELOCITY-CHANGING COLLISIONS

ON THE OUTPUT OF A GAS LASER
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I. Introduction

The radiation emitted by an atomic system can be

significantly affected by collisions with neighboring atoms.

The parameters which determine the shape of a spectral line

(atomic energy level separation, decay rate, velocity) fluc-

tuate due to random collisions during the radiative life-

time of the atomic system. There is an extensive liter-

ature on the effects of collisions on the shape of spectral

lines covering about 70 years. A recent paper 1 gives a
comprehensive list of references on this subject.

In a previous publication2 , a model for a laser

oscillator was presented in which the active atoms undergo

collisions during their lifetimes. The result was a theore-

tical expression for the pressure dependence of the in-

tensity of the laser in satisfactory agreement with the
3 ~~~~~~~4experimental studies of Szoke and Javan3 and Cordover4 .

Other authors have derived similar theoretical expressions.5

In I, two types of dynamic collisions were considered.

The first effect of a foreign perturbing atom on a radiating

atom was regarded as a van der Waals interaction which

caused the atomic transition frequency to change adiabatically

with time (phase changing collisions). In the second effect,

considered as independent of the first, the forces on the

active atoms caused them to follow some complex zig-zag path.

A model in which the atoms return to equilibrium after each

collision was used to describe the velocity changes.

The calculations in this paper are similar in form to

those of I. The main difference is that a more reasonable

model for deflecting collisions is used. It has recently

been found6 that the simultaneous consideration of deflect-

ing and phase changing collisions requires a completequantum

mechanical treatment of the collision process. A radiating



(2)

atom is in a mixture of two atomic states and the center of

mass motion of this system, after a collision, cannot in

general be described classically.

However, the special case where the van der Waals

interaction is the same for both atomic states, can be

treated classically. In that situation, phase effects are

absent and collisions only produce velocity changes. This

paper will only deal with velocity changing collisions. The

resulting theoretical expression for the laser intensity may

be helpful in isolating the effects of deflecting collisions.



(3)

II. Nature of Collisions

The collisions in this paper will be described by the

binary interaction of a foreign gas (perturbing) atom with

the radiating (emitter) atom. The collision time can be

approximated by the quantity tc = bo/vrel where b is the*o rel o

impact parameter and Vrel is the relative velocity of emit-

ter and perturber. The time between collisions for a typ-

ical impact parameter b0 is approximately T = [nwb 2vrel] 1

where n is the number density of perturbers. For pressures

of about one Torr, T 10 7 seconds,while for most sig-

nificant collisions tc is less than 10 seconds. The case

where T»>> tc is called the impact limit for collisions.

The assumption of impact collisions permits a greatly

simplified mathematical treatment of the collision problem.

The properties of the system after the collision only depend

on the properties before the collision. This situation is

chatacteristic of a Markoff process and facilitates the

computation of complicated statistical averages. In the

case of binary impact collisions, the Boltzmann equation may

be used to obtain a fairly simple mathematical description

of the collision history of the atoms.

The next section gives a formal presentation of the

laser problem which includes the effects of deflecting

collisions.
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III. Laser Model

The following model for a gas laser is taken from
7

an earlier paper., Suitable modifications are

made to allow for collision processes. -

The laser operates in a one-dimensional, high-Q

resonant cavity of length L. The cavity contains a medium

of active atoms which acquire nonlinear dipole moments through

interaction with a single mode electromagnetic field of the

cavity. The requirement for self-sustained oscillations is

that the macroscopic polarization of the medium acts as the

source for the assumed electromagnetic field (self-consistent

field). The electric field in the cavity mode is

E(z,t) = E(t) cos[vt + p(t)]-sinKz (1)

and the macroscopic polarization projected on that mode is

P(z,t) = [C(t)cos(yt + cp(t)) + S(t)sin(vt + c(t))]sinKz (2)

Using the assumption of slowly varying amplitudes and

phases the self-consistency requirement is

E + ½(V/Q)E = -( /Co) S (3a)2 ~~2 ( Weo )3a

(V + $ -O)E = --(,/el)C (3b)

where Q is the cavity frequency with no active medium present.

The active medium consists of an ensemble of atoms with

levels a, b and with natural decay rates Ya' Yb The active

atoms are introduced into the cavity at rates Aa, Ab. If the

atoms move through the cavity, the position z at time t of a
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an atom is given by

z = z + t v(t)dt (4)

0

The integral on the r.h.s. of Eq. (4) allows for the

possibility that the atoms undergo deflecting collisions

which cause the z-component of velocity to change. If the

-atomic energy levels are shifted by collisions with neigh-

boring atoms, the transition frequency will be a function

a(t) of time. As explained in the introduction, these changes

will be neglected.

An atom is introduced into the cavity at the position

z ° at the time to in state a or b. The atomic transitions

a - b are caused by the perturbation

t
hV(z,t) = -PE(z,t) = -E(t)sin[K(z° + ft v(t)dt)]cos(yt + P)

0

(5)

where Pis the electric dipole matrix element

P= e(alxlb) (6)

The equations for the time development of the density

matrix p for one atom are

aa = -YaPaa + iV(Zlt)(Pab - Pba)

Pbb = -YbPbb - iV(z,t)(Pab - Pba ) (7)

Pab YabPab - iWPab + iV(zt)(Paa - Pbb )

Pba = Pab*Pba = ab



(6)

where ¥ab = (a + Yb) and o is the transition frequency

between levels a and b. Removing the optical frequency

v from the off-diagonal elements of the density matrix

by writing

-ivt
Pab = P1 e t (8)

and neglecting terms with time dependence e±2ivt Eq (7)

can be rewritten as

Paa 'YaPaa - li(PE/h)sinKz(p1 - P1*)

-1.(E/h)sinKz(Pl - Pl* )

Pbb = -YbPbb + 2i(PE/h)sinKz(P1 - P1 *)

P1 -(Yab + i(co - v))P1 - li(PE/h)sinKz(Paa

P (ab i(CO - v)) P1 * + li(PE/h)sinKz(p

where z is given by Eq. (4). 

(9)

- Pbb )

- Pbb)

The initial conditions for equations (9) are

Pa(aZototo) = 8a8aa
(10)

pa (b,z0o to,to) = 8a6b 

depending on whether the ,atom has been introduced into the

cavity in state a or b. Formally solving Eqs.(9) gives

paa(a,zo,t,to) = e-Ya(t-to)8a
1 ~t ti

--- ½i(PE/h) J dt'e Ya(tt)sin[K(z+ f v(t)d")]
[pastt t
0 0

X [pi(Cz0,t',t0 ) - Pl*(O,Zo,,totO)]



(7)

pbb(maZott) = e Ybo(t to) e

+ii~~t t AA
+ i(PE/h) dtte Yb(t

-

t' )sin[K(z+ v(t)dt)]
ot vt
0 0

X [pl(a,zot',to) - Pl*(a,zo t'tot)]

p1 (az tt) i(PE/h) = dt'e [Yab+i ( v)](t- t' )

t0 tt

X sin[K(zo + t v(t)dt)]
t

0

x [Paa(aZot',to) - Pbb(a,zOt',to)]

(11)

-The macroscopic polarization P(z,t) is obtained by summing

the dipole moments of all active atoms that arrive at z at

time t -- no matter where or when they were excited or how

they got to (zt), i.e.,

t t
P(z,t) P fdto(dzo P A a(Zo'to)6(zz - t v(t)dt)

- 0 0a=a,b a t
0

-=~:, b tt 

X [Qab(aZo t0to) + Oba(aZo't'to)])path

(12)

The symbol path in Eq. (12) denotes a statistical

average over all collision histories of atoms which start

at (zo,to) and end at (z,t). This average will be considered

in detail in subsequent sections. In order to find the

appropriate path averages, the history of each atom must be

traced using the microscopic equations (11). It is con-

venient at this time to define microscopic versions of
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macroscopic variables to be used later. Let

n(a,z0 ,ttot) = [Paa(cZotto) - pbb(a,zOt,to)] (13a)

s(a,zot,to) = -iP[pl(a,zo,t, to) - pl*(a,zo,t,to)] (13b)

where n(azo0,t,to) is the microscopic version of the popula-

tion inversion density of the atomic ensemble and s(a,zo ,t,t o)

is the microscopic version of the out-of-phase part of the

polarization S defined in Eq. (2).

Using Eqs. (11) two coupled integral equations for n and

s can be obtained.

n(a,Zo,t,to) = [eYa(t to)6a - e-Yb(t-to)8b]

+ (E/h) tdtt[eYa(tt) eYb( ]
t0 

ti

xsin[K(z0 + t v(t)dt)] s(,z0 ,t',to) (14a)
t

0

s(az0''t 0 ) ( E/h) dt'[e [ab- i( )](t-t')+ c.c.]

x sin[K(z+ 0 vt)dt)] n(a,z 0t',tot) (14b)tot'

0

For the perturbation treatment in this section, Eqs. (14)

will be reduced to a single integral equation. First define
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s(z ,t,t) = A a(Zoto)s(azo,t,t) (15)
a=a, b

Substituting (14a) into (14b) and using (15) gives a single

integral equation for s(zo,t,to0)

t ti
s(z°,t,to) = -i(P2E/h) f dt'sin[K(z°+ f v(t)dt)]

t t
0 0

x [e-$(t-t')+ e-~*(t-t')]

x [Aae Ya(t '-to) - Abe -Yb(tt-to)]

t t' t'
_ (P2E2/h2) x dt' dt'' sin[K(zo + t v(t)dt)]

to o o

x sin[K(Zo+ t v(t)dt)][e-P(t-t') + e-P*(t-t')]
t
0

x [e'Ya(t
' -

t ') + e-yb(tt
-t t)] S(Z t'',t)

(16)

where ~ = ¥ab -i(w-v).

Equation (16) is still a microscopic equation. The

solution of Eq. (16) to first order in the electric field

E is

s()(zt,t) = - (PE/h) dt'sin[K(z + v(t)dt)]
0 0 2 ~~t t

0 0

X [e- (t-t')+ e-P* (t
-
t ' ) ]

x [Aae Ya(t to) - Abe Yb(t -to)]

. ~~~~~~~~~~~(17)

and the third order solution is
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t t I
s(3 )(Zo,t,to) = (P4E3/h3 )f dt' f dt'' t dt'I'

, t to 
0 0 0

tit A
^ ^tv(t)dt)]si[~+t sin[K(z 0 + t'ov(t)dt)]

t
o

t

tit!

X sin[K(z 0 + v(t)dt)][e -
$ (t - t ' ) + e-t*(t-t')]

t
0

X [e-Ya(tt' ) + e-Yb(t't'')][e-P(t''t'i )+ e
-

*(t ' '

-
t
' t)]

-x [Aae-Ya(t'''-to) - Abe Yb(t to)]

(18)

The atoms under consideration arrive at the point z at

time t. If s(n)(zo ,t,to) is the nth iteration of Eq. (16),

then define

s(n)(z,t,to) - Jdzo s(n)(zo ,t,to) 8(z - z ° -f v(t)dt)
0 0 ~~to

0 (19)

.The-nth order contribution to the out-of-phase macroscopic

-polarization is

t
s(n)(z,t) = dt (s(n)(z,t, t))p

(20)

The path average is taken before summing over all initial

excitation times, to. The first order contribution then

becomes

ti
S~l)(z~t2 = -PE/h) J- dtof dt'<sin[K(z- Jv(4t)d't)]

0

X te-(tt' )+ e *(tt)][A e-Ya(t to) Abe Yb(t to)])path

(21)
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and the third order contribution is

t t tI
S(

3
( z 't ) = -(/ h3) f- co tdt°Ift dt0

-- G$0 

tII
I I dt' I
t

O

t ~ ~~t v() dt)]
(sin[K(z-t v(t)dt)]sin[K(z-ft v( )dt) ] s i n [ K ( z - f t' ' '

ti tit till

x [e
-

(t
-
t ) + e-P*(t-t')][e-Ya(t' -t

'f) + eb ( t '
- t

' '
)

x [e-(t''-t' ')+ e-~*(t'"-t''')]

- Abe Yb(t to)])path

(22)

When the product of the three sine functions is written

in exponential form eight terms will result.

The next section will deal with path averages.

i

'1

I

X [Aa eYa(tff'-to )
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IV. Path Averages

The path averages may be calculated using a classical

density function f(zovo,tOlz,v,t) for the motion of the

active atoms. The mathematical formulation of the problem

is given by the Boltzmann equation for the z-component

motion of the atoms

bf/at + vz bf/z = J(f) (23)

where J(f) is an integral operator describing the collisions.

The initial condition for Eq. (23) is

f(z0,vo0 ,tolz,v,to) = 8(v-v0o) 6(z-zo) (24)

If the process under consideration is stationary in

time and the medium spatially homogeneous then f may be

rewritten in the form

f(zovVostolz,v,t) = f(voIz-Zo,t-t o) (25)

The path average of a function R(vo0 Iv,z-z0o,t-to) is then

given by

(R(Volv,z-z'ot-to))path dvoW(vo) dv fd(Az)

R(Volv,Az,t-to)f(VolV,Az,t-to)

(26)

where W(vo) is the initial velocity distribution and

Az = Z-z .
0
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The path averages to be evaluated must take into

consideration the complete history of each atom. Therefore,

the quantity to be averaged in Eq. (21) is

U(1) E sin[K(z -I v(Z)dt)][e-4(t-t') + e
-

L*(t
-
tt)]

x [Aae-Ya(t'-to) - Abe-Yb(t'-to)]

(27)

In order to compute the path average of U(1) two density

functions f(volv',z'-zo,t'-to) and f(v'lv,z-z',t-t') must be

used since U(1) is a product A(t'-to)R(z-z',t-t') where

A(t-to) = [Aae-Ya(t'-to) - Abe Yb(t -to)]

(28a)
and

R(z-z',t-t') = sin [Kz- K(z-z')][e
-

(tt' ) + e
-

*(tt' ) ]

(28 b)

t
where z-z' = J v(t)dt. The path average of 3(1 ) can

t'
then be defined as -

(M(1) path = fdv0 W(V0 )dv'fd(Az 0 )f(v0 V',AZo ,t'-t 0 )

x A(t'-to)fdvjd(Az')f(v'lvAz,t-t')R(Az',t-t')

(29)

where Az
o

= Z'-zo and Az' = z-z' 

It is useful to define the quantities

Gx(v'Ivt-t') = rd(Az')f(vtIv,Az',t-t')ei
x
KmZ 

(30)
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so that Eq. (29) becomes

(<1) path = fdVoW(vo)dv'fdv Go(voIv',t'-to) -

x [e G+l(v'lv,t-t') - eiKZGl(v'lv,t-t')]

x [Aae- Ya(t'to) - Abe-Yb(t-to)]e (t-t')+ - *
(
t

-
t ' )

(31)

Then from Eq. (21), the first order contribution to S(z,t) is

S(1 )(z,t) = l (P2 E/h) f dt f dt(('>path= ~~~-m2 0 f ~~t , (1)path

0

(32)

Using the same procedure for the third order term, Eq.(22)

-becomes -

t t t' ' 
S(3 )(z,t) = (1/3 2 )(P4 E3/h3) . dtof dt' dtt'" dt'"'U(3))

-CO0 t o t o t o p
0 0 0

(33)

The function (())path is the integrand of Eq. (22) and

can be written in the following form

(~(3))path = 21 fdvofdV''t'dv'f'dv'Ifdv G0 (voIv'',th'-to)

X {eiKZ[G_l(V''"lv |,t"'-t"'')GO(v''|v',t'-t'')G_l(v'lv,t-t')

+:G+l(v'h'lv'',t''-t'')G o(v''lv',t'-t'')G l(VIvt-t't)]

.+ G+l(vtttlv",ttf-tttt)GO(vttllvftt-ttt)G-l(vtlv~t-tt)

-i~ze- G - G_]
(continued on next page)
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X [e
-

4(t t
') + e-4*(t't')][e-Ya(tf-tT1) + e-Yb(t '

-
t ' )]

x [e - ( t
' '

-
t

'
' ) + e

-
$
* ( t

' t' ) ] A(t to)

(34)

where A(t'''-to) is given in Eq.(28) and the two terms

±3i~in e 3 iKz have been neglected.

By changing orders of time integration, S(l)(z,t) and

S(3)(z,t) can be written in terms of Laplace transforms

QK of the G.'s where

K(v'Iv,c) = dT e -cLG,(vIv,rT)
0

(35)

Then

S(1)(zt) =- (/Ji)( 
2
E/h)fdvoW(vo)Sdv'Sdv

[AaO(VolV.,Ya) - AbO(volv',Yb)]

x {eiKz[ _l(v'tv,4) + qvl(vtlV,4*)]

-iKz
- e iKz[+l(v'1v,4) + 9+l(v'lv,*)]

(36)

and
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S(3)(zt) =(1/64i)(P4E3/h3), jdv W(v )dv' ''

[Aao(VolV,,V, Ya) - AbqO(Volvt ,Yb)]

x fdvtfdv'fdveiKZ[(+l(v''ulv'.) + q+l(v'''lv'',*)

+ IV P1 (V Iv''uv ,p) + ql(vt Iv,*))

X (Q 0 (v''IvYa) + rO(vtWtv!,yb))

X (Ql.(V' Iv,P) + Ql(V Iv,**))]

-e iKz[ _]

(37)

In the third order contribution only the terms corresponding

to the high Doppler limit have been included. The next

section will be devoted to finding a reasonable collision

operator J(f) used in Eq.(23) so that expressions for in

Eqs. (36) and (37) can be calculated.
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V. Binary Collisions and

the Boltzmann Equation

For the following calculations, assume that the

active atoms have mass m and undergo binary collisions with

inactive atoms of mass M. The gas of inactive atoms is

considered to be in thermal equilibrium. At any time let

the velocity of the active atom be denoted by v and the

velocity of the perturbing atom by V both measured in the

laboratory frame.

Viewed in the center of mass system (cm) the scattering

process changes the velocity of the active atom from Vcm to

Vtcm by rotating it through an angle e (See Fig. 1).cm

The velocity of the active atom in the cm system before the

collision is given by

vcm = [M/(m+M)] (v- V)

(38)

where (v - V) is the relative velocity of the emitter and

perturbing atoms. The velocity of the center of mass in the

laboratory system is

ff = (mv + MV)/(m+M)

(39)

Since the magnitude of the relative velocity does not change

after the collision v'cm is given by
cm

cm = [M/(m+M)] - V

(40)
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where the unit vector e makes an angle 0 with the relative

velocity (v - V) (see Fig. 1). The velocity of the active

atom in the laboratory system after a collision is

Vt= + U
cm

(41)

Adding and subtracting v from the r.h.s. of Eq. (41) and

using (39) and (40) Eq. (41) becomes

V' = v + [M/(m+M)]tIV - 1 ( -( - I)

(42)

Let P and q be unit vectors parallel and perpendicular

respectively .-to (v - V) (see Fig. 1). Projecting the

vectors in curly brackets in Eq. (42) onto ^ and q gives

the result

vI v + [M/(m+M)] Iv - VI {sin9qO - (l-coso)^p

(43)

or

v' = v - [2M/(m+M)]{sin(0/2)~ - cos(e/) i(e/2)Iv-VI

(44)

The quantity in curly brackets in Eq. (44) is a unit vector

making an angle [(9-w)/2] with the relative velocity

(v - ) and the quantity in square brackets is the inner

product s(v -V). Equation (44) then becomes

' = - [2M/(m+M)]s[^(v -v)]

(45)

i

I
I
I
i
t

I
I
I
VI

I

i
I
I
I
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If the potential between the two atoms is U(r) then

9 is given by9

e =' H -2, 1o

where o = dr [(2E/J2 ) -(2rU(r)/J2 ) -(/r2)] 2 r-2
rmi --

and n = [mM/(m+M)] (reduced mass)

E = (r/2)!| - T 2 (kinetic energy in cm system)

J2 = 2nb2 E (square of angular momentum)

b = impact parameter.

(46)

The collision operator in Eq. (23) in general is 10

J(f) = frd'd21? -. * , , -, ~ ? -V)

-.. (47)
3/2

where F(V) = N(PM/w) exp[-pMV2 ]

(with PM = [M/2KBO] and e = temperature)

is the velocity distribution of the perturber atoms multi-

plied by the number density of perturber atoms. The

differential cross section for the collision (*,V) - (v't,V')

which turns the relative velocity through the angle 0

is a (v-VI,e0).

In practice, J(f) is difficult to express in closed

form for specific laws of force. In only one case, that of

Maxwell molecules (U(r) = B/r5), can a usable form of J(f)

be obtained. In that situation the product v-i7o' depends

only on 8.
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For most applications it is sufficient to choose a

phenomenological collision kernels W(*Iv') (probability per

unit time for going from velocity v to velocity v'). In that

,case the Boltzmann equation may be written in the following

three-dimensional form 

bf/bt +v-v'f = dV'[W(v'|v')f(v',~r't) - W(v'lv')f(v'rt)

(48)

Comparing Eq.(48) and Eq.(47) for J(f) gives an equation

for W(VVI')

w(jvv') = fdVdQ!v-- |a( v-jV,0)F(V)6(v' - v'(P,V,))

(49)

where v(vV,G) is given by Eq. (45).

For the laser problem, only velocity changes along

the cavity axiz (z-axis) will affect the polarization.

Therefore, a collision kernel W(vzlv'z) can-be used which

only describes the z-velocity changes. Averaging Eq.(49)

over all possible initial vx and vy with a Maxwell dist-

ribution and integrating over all final v x' and vy' gives

W(vzlvz ) SdVxWm(vx)fdvyWm(vy)JdvxfdvyW(VlV )

= fdvxWm(vx)dvyWmW(vy)dVf dO Iv-a(,I-Vl,)F(V)

xfdvx fdvy' 6(vx ' vx'(vVe))6(vy' -v (v ))

X 6(vZ
' -Vzt(Vv0))

(50)
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Doing the vx ' and vy' integrations gives the expected

one-dimensional counterpart of equation (49)

W(vzlvz,) = SdVxWm(vx)Ydvyfm(vy);dVdaljv- l(lv-Vl,)

X F(V) 6(vz ' -Vz(",V,0)) -

(51)

The quantity vz'(v,V,e) is given by Eq. (45) as

v t(v,V,e) = v - [2M/(m+M)] sz[~-(v-V)] -

(52)

Figure 2 shows a typical intermolecular potential. The

6
potential usually varies as l/r for large values of r. The

repulsive part of the potential is not very well determined

12
and fits of 1/r 2 and higher inverse powers of r have been

used. In order to simplify the calculation, the repulsive

part of the intermolecular potential will be represented by

a hard core. The potential U(r) to be used then becomes

(see Fig. 2)

-B/r6 for r > ro (van der Waals potential)

U(r)

r for r = r
o

(hard sphere potential)

(53)

where B is the dipole-dipole interaction coefficient and

r is the hard core radius.
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It is very difficult to calculate a closed form for

W(vzlvz') from equation (51) using the potential (53). An

approximate form can be deduced using a computer to simulate

the integrals in Eq. (51). The following procedure was

used to determine W(vzlvz') for the potential in Eq. (53):

Choose and fix vz . The following steps are repeated many times:

(i) Choose vx and Vy from a Maxwell velocity distribution.

(ii) Choose Vx, Vy, Vz from a Maxwell velocity distribution.

(iii) Choose impact parameter b at random in the range 0 - 10 -6cm.

(iv) Calculate vz' from equations (46) and (52) for the

potential_(53) by integrating the equations of motion.

(v) Assign weight NbAbjv-Vj (probability of collision per

unit time associated with impact parameter in the range

[b,b+Ab] and with relative velocity (v-v)).

(vi) Construct frequency table, i.e. sum up all the weights

NbAbI7-1| of final z-velocities in bins of size Avz .

For the computor calculation B = 4.22 x 10 5 6 erg-cm and

rO = 5.0 x 10 8cm.

Considering only collisions which miss the hard core,

the final z-velocity distribution is sharply peaked around

the initial velocity vz with over 957, of the vz within

i % of vz . Collisions reaching the hard core, however, lead

to more significant velocity changes. For these collisions,

the resulting W(vzlvz') has the form of a displaced

Gaussian (see Fig. 3).
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The following discussion on one-dimensional, hard

sphere, elastic collisions may give some insight into the

above result for hard core collisions. Assume all the

particles are constrained to move only in one dimension and

make elastic collisions. The same notation will be used as

in the three-dimensional case.

Using conservation of energy and momentum

v = [M/(m+M)]{ V + (m/M)v + v-VI 3

(54)

In the case of a collision (v' # v)

V = [2M/(m+M)]V +-[(m-M)/(m+M)]v

(55)

The probability of going from v to v' is analogous to Eq. (49)

1

W(vlv') = (l/T) (NM/ )2 SdV e- MV
2

X 8(v'- [2M/(m+M)]V -[(m-M)/(m+M)]v)

(56)

where (l/T) = the frequency of collisions.

Let U = [2M/(m+M)]V. Then Eq. (56) becomes

1

W(vlvt) = (l/T)(5/v)2exp[-$(v'-I'v)2

(57)

where r = [(m-M)/(m+M)] and 8 = OM[(m+M)/2M]2

(58)
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The results of the above one-dimensional calculation

suggest fitting the numerical results for the three-dimen-

sional hard core collisions to a kernel of the form

1

W(Vzlvz') = (/T)($/v) 2 exp[-O(vz Z)2

-(59)

As in the one dimensional problem, ¢ and r are functions of

the mass ration (m/M) (see Fig. 4). In addition B and P

and (l/T) are functions of vz. However, the vzdependence

of those parameters will be neglected in order to simplify

subsequent calculations.

Note: Henceforth v will be denoted by v since only one

velocity component is under consideration.

The conditions of equilibrium impose certain restraints

on the values of B and r. At equilibrium, the collision

operator in Eq. (23) must vanish. Writing J(f) in terms

of the collision kernel (59) in the form of Eq. (48) at

equilibrium gives

fdv'[w(vlv')Wm(v) - W(v'Iv)Wm(v)] = 0

(60)

where W(vjv') is given by Eq. (59) and

1

Wm(V) (gm/r) 2 exp[ -mv2 ]

(61)

Doing the v' integral in Eq.(60) gives
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1

(1/T)exp[-gmv2] - (l/T)[w/(F2 +Pm) exp[ -9mV2/(r]2+2m)]

=0

(62)

Simplifying Eq. (62) gives

1
2 2 2 2O~

[ 2/(r2+%m)] exp{-mv2 ([ _(1-r2)_m]/(r2+m)) = -.

(63)

Equation (63) is satisfied for every v only if

2
~(l-r ) = ~m

(64)

For the collision kernel (59) as obtained by numerical

methods, it was found that the quantity [0(l-r2)/ m] ranged

from .982 to .962 for mass ratios (m/M) = 1.0, 2.9, 4.0,

5.3 when 5000 collisions were used in each case.

In the one dimensional model of Eqs. (54) - (58) $ and

r fulfill the same equilibrium condition. Taking B and r

from Eq. (58) gives the required relationship

8(1-P2 ) = (m/M)
M

= (m/M) (M/2KBe) = [m/2KB8] O m

(65)

The significance of the parameter r can be determined

by finding the average velocity, (v'), after a collision in

a time T

(v') = TJdv' v'W(vlv') = rv

(66)
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Therefore, r is the ratio of the mean v after a collision

to the velocity before a collision. It can also be con-

sidered as the fraction of the original velocity that is

"remembered" or the "persistence of velocity."

In the case of the one-dimensional model it was 

found that after a collision

v' = [2M/(m+M)]V +[(m-M)/(m+M)]v -'

(67)

The mean value of v' is

(v') = SdVWM(V)v' = [(m-M)/(m+M)]v

-(68)

This direct calculation gives a r of [(m-M)/(m+M)] which

was obtained in deriving W(vlv') of Eq. (57).

For the three-dimensional case r can be calculated

exactly for hard sphere collisions from first principles.

The result given by Chapman and Cowling is

* = [m/(m+M)] + l[M/(m+M)]{x-3 (1-2x2)Erf(x) - x 2 e
-
x }

2~~~

X (e - x + (2x + x- )Erf(x)1

~~~1/2 -(69)
where x = v/-V with V = [2KBe/M]

If M > > m, x >> 1 for most of the range of v and

r ~ m/M << 1

(70)
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This situation corresponds to what is usually called a

"strong collision model." For r = 0 in Eq. (59)

1/2
W(vlv') = (1/T)(e/v) 2exp[-$v2] A(v')

(71)

which is an equilibrium distribution. -

When m >> M, x << 1 for most of the range of v and

r - 1 - (3/2)(M/m) 

(72)

or

(i - r) << 1

(73)

This case is called the "weak collision model." If the

collision operator J(f) is expressed in terms of the kernel

of Eq. (59) and expanded to first order in (1- r), the

Boltzmann equation reduces to a Fokker -Planck diffusion

equation.12

In intermediate cases r depends on v in contrast to the

assumption of constant B and r following equation (59).

For the remainder of the paper it will be assumed that

r, r, and (l/T) are independent of velocity and that the

kernel of Eq. (59) is a reasonable good model for elastic,

hard sphere collisions.
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VI. Strong Collision Model

When the velocity after a collision is totally

independent of the velocity before a collision

w(vlv') = A(v') -

(74)

It is required that the gas approach equilibrium with the

passage of time. Therefore, the collision operator in Eq. (23)

must vanish at t = ~, giving

f(v,o)A(v') = f(v',w)A(v)

~A~~~~~~~~- ~(75)

This gives

A(v') = cf(v',,)

(76)

or A(v') is an equilibrium distribution. This was the result

obtained in Eq. (71).
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VII. Weak Collision Model

If the active atoms are scattered by light perturbing

particles, the velocity undergoes significant changes only

after many collisions. Section V, Eq. (73) gave (l-r) << 1.

Expanding the collision integral J(f) of Eq. (23) in a

Taylor series in (1-Fl) gives1
2

bf/bt + vif/)z = 2 (1/n!)[(n/Avn] {An(v)f(v,t)]
n=l

(77)

where

A (v) = fdv'(v-v')nW(vlv')
n

... J(78)

Using W(vv') = (1/T)'k/v) exp[-O(v'-rv)2 ] and keeping

only first order terms in (1-Fr) gives

bf/,t + vif/az = [(l-r)/T]B/Bv[vf] + [1/20T]D2 f/Bv2

(79)

Equation (79) is a Fokker-Planck diffusion equation for

Broymian motion.

The kernel W(v' - Pv) of Eq. (59) can be used for a

wide range of collisions problems with r between 0 and 1.
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VIII. Solution of Boltzmann Equation

with Persistence of Velocity

1/2
With W(vlv') = (1/T)(0/w) exp[-O(v'-rv)2 ] the

Boltzmann equation, (48), can be written in terms of

G. (defined in Eq. (30) as the Fourier transform of f)

as follows,

GX/~T = -[(l/T) - ixKv]G (volv,-r)

1/2
+(1/T)(/WT) fdv'exp[-O(v-rv')2]G (v lv',T)

(80)

The formal solution of Eq. (80) with the initial condition

Gx(volv,O) = 6(vo-v) is

G(volv, Tr) = 6(Vo -V)exp[-((l/T) - ixKv)rT]

1/2 .
+ (1/T)(/w) ,. dt'exp[-((l/T) - ixKv)(T- t )]

0

x fdv'exp[-O(v-Tv')2 ]G (volv',T-r')

(81)

The expressions for S(1 )(z,t) and S(3 )(z,t), Eqs.

(36) and (37), involve C, the Laplace transform of G

(see Eq. (35)). Taking the Laplace transform of both sides

of Eq. (81) gives the integral equation

qx(volva) = 6(vo0 -v)[a'-ixKv]-

1/2 -
+(1/T)($/7v) [a'-ix~v]-

X fdv'exp[-o(v-rv')2 ] Kx(vOIv',a)
(Z)
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where a' = a + (1/T)

A solution of Eq. (82) can be found by iteration with

the following sequence of equations

Q (vo IV,a) =

Q,(N)(Volv,a) =

6(vo-v) [a'-ixKv] 1

(1/T)(B/w)1/2[a'-ixKv]-

(83a)

x fdvtexp[-$(v-'rv')2]rx(N-1)(vol(V3,a)

(83b)

It can be verified by induction that the solution of

(83b) is 

L 1~/2 N I1[-.
[(!/T)(0/r) / IN[a'-ixKvo] - i[a'-iKv]-1

x exp[-(9/AN)(v-Nvo)2]exp { -8n/An_1) [ n -( Vn+1

N
x S...fdVN...dv2 H

n=2
expf ($An/Anl)[vn (rvn+l

+ rn-lvo/An-l)(An-l/An)]2 [a'-ixKvn]1-
(84)

where An= (1-r 2n)/(1-r2); VN+l =v and

Q%(vOlv,a) = E %( )(volv,a).
N=O

For x = 0, Eq.(84) simplifies to

q 0 (N)(VoIV,a) = (1/a')[l/(M'T)]Nexp[-($/AN)(v-rNvo
)

2
]

x [/i(vAN)]1/2

(85)

q(W (vO lva) =
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so that

q0 (volv,a)- 6(vo-V)/a
C0

+ a' 2 (To') N[/(TAN) ]/2exp[ (/AN)(v_-Nvo)2]
N=l

(86)

Equation (86) is identical to the result of Keilson and 

trer12Sta-rer
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IX. Calculation of Intensity Profile

For both S(1)(z,t) and S(3 )(z,t) (Eqs. (36) and (37)),

the following integral R(v') is required:

R(v') = dVoWm(v) [ a
q
o(vvo lv',Ya )

-
bq(vo

lv',Yb ')]

(87)

where = ~~2 1/2 2 2
where Wm(v) [l/(um 7r) ]l/2exp[-vo2/um2] and ;-

2 u2(lu m = Bm =(1-r
2

) = u -(1-r2).

Using (86), (87) becomes

R(v') m= Wmv' .

(88)

where

N = [(Aa/Ya) - (Ab/Yb)]

(89)

is the unsaturated population inversion of the active medium.

The significance of the result given in Eq. (88) is that a

gas starting in equilibrium will remain in equilibrium.

.Using the solution for QX (Eq. (84)) to first order in

(l/T) for low pressures, in Eq. (36) gives

S(l)(z,t) = - lN(P2 E/h)sinKzfdv'Wm(v')
j
dv { 6(v' - v)[p, -iKv ] 1

2 1/2 , -l
+ (l/T)[l/(u2) ]1/2[ -iKv] l[,-ikv']1

x exp[-(l/u )(v-Pv') ]} +c.c.

(90)
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where ' = yab -i(c-v) + (1/T)= ab

Recognizing the plasma dispersion function7

Z(~',u) = iKu[1/(u2w)]1/2fdvexp[.-V2/u2 ][±'+iKv] -1

(91)

Eq. (90) reduces to 

S(1
) (z,t) = -1_N(P2 E/h)sinKz {((iKUm)-lZ(',,Um)

2

2 1/2 -l
+ (1/T)[1/(u w)] /2(iKu)-

x fdvWm(v)[['-iKv] -
Z

( W'-irKv,u) } +c.c.

(92)

In the Doppler limit where [yab'/(KUm)] << 1 the

plasma dispersion function is approximately

Z(,',u) ~ iwl/2exp[ -ti'2 /(Ku)2] - 2irr'/(Ku)

(93)

where gi' = Im(p') = -(m-v)

fr = Re(p') = Yab + (l/T)

The expression for S(1)(z,t) in the Doppler limit is then

1

S(1)(z,t)=-
2
N(p2E/h)(Kum)-lsinKz 2exp[-(o-) 2/(Kum) ]

X [ 1 + e wl/2exp[-(co-v)2(1-r)2 /(Ku) ]]

-2Yabt /(KUm) }

(94)
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where e =(KuT) 1

The expression for S(3)(z,t), Eq. (37), can be evaluated

using similar techniques. To first order in (l/T)

S(3)(z,t) = (1/32)(P4E3/h3)NsinKz D (l/ya')(iKum)
a=a, b

X [,L lz(l',um) +(2yab')-l(z(~',um ) +Z(p'*,Um)]

+ (l/T)(iKum)- ( 1 / y ' )((2p') -1FdvWm(v)[Z(p'+irKvu)

+ Z(p'-irKv,u)][(.'-ikv) l+(p'+iKv) 1]

+ (2yab) 
-

lpdvWm(v)[Z(,L*+ir Kv,u) + Z(,'-irKv,u)]

........ 'x [(p'-iKv)-l+(p'*+iKv) ]

'2y -2 (/T) (iK -ldvWm(V)Z(-irKv )(+iKv)-

+ 2ya -2(1/T)(iKum) -ldvWm(v)Z('-irKv,u)(p'*+iKv)

-

1

(95)

In the Doppler limit, Eq. (95) reduces to

S(3 )(zt) ~ (1/8)(P4/h3)NTVl/2(yaYb)-lexp[-(a-)2 /(Kum)2]

x { 1 + S£'(Cv) + C /2'(c-u)(exp[-(o-v)2(1-r)2/(Ku)
2

]

2 2 2 \1/2 2 )2/()2
+ exp[-(co-v)2(l+r)2/(Ku)2]) + 2ew l/2exp[-(w-v)2(1-r)2/(Ku)

2 ]

+ C l/2yayb' (Ya- +yb -2)(exp[-(cO-v)2(1-r)2/(Ku)
2

]

+ exp[-(o-v)2 (1+r)2/(Ku)2]))

(96)
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2 2,+2 -1where £'(03-v) = Yab [Yab' + ( 2-v)]

Taking the projections of S(l)(z,t) and S(3 )(z,t)

on the cavity mode (this merely eliminates the factor

sinKz in Eqs. (94) and (96)) and substituting the result

into the amplitude equation (3) at steady state ( E = O)

the following equation results:

0 = oE/Q+ S(l)(t) + S(3 )(t) -

(97)

Define the dimensionless intensity as

I(W-v) =--(P2 E2 /h2 )(y aYb) -1

(98)

and the threshold population inversion density NT as

N when I = 0 and o = v, i.e.,

NT = (eo/Q)[(hKum)/(P2 1/2)][1 + evl/2 - (2yab')/(7/2Kum)]1

(99)

Let

h = N/ NT

(100)



(37)

To first order in e = [KuT] 1 the intensity of the laser

is

I(a-v) = 8[(Ya'Yb')/(YaYb) ]

X { 1+ erl/2. - exp[ (-ov)2/(Kum)2][(2yab')/(vl/2Kum)

-l ~1/2 2
+ (lew / 2 - 2Yab )

X f '(c-v)[1 + Trl/2( + &_)]+ 1 + 2e¢r/2

+ ewl/2 (Ya'Yb ) (Ya 2+yb2)(A++f_) )

2 2 (KU)2] (101)
where i+ = exp[-(CO-v)2(1+r)/(Ku)2 ] (101)

The frequency of collisions (l/T) is directly

proportional to the number density of atoms in the laser

cavity and is therefore directly proportional to the pressure

p. Thus,

e = [KuT] 1 = [KuT1] p

(102)

where (l/T1 ) is the collision frequency per Torr.

Figure 5 shows a plot of Eq. (101) as a function of

(o-v) for various values of the pressure p. At each pressure

the relative excitation h is kept constant.

Figure 6 is a plot of the maximum intensity Imax and

the intensity at the central tuning dip Idip for each tuning

curve in figure 5 as a function of pressure. The non-

linear variation of Imax and Idip with pressure comes
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mainly from-the coefficient A = (Ya'Yb')/(YaYb) in Eq. (101).

Recalling that (l/T) = (p/T),

A = (YaYb) [yaYb + 2Yab(P/Tl) + (p/T1 )
2

]

(103)

This increase of laser intensity with pressure comes

basically from a reduction of the third order(or saturation)

term. An atom gives up energy to the radiation field

and then makes a deflecting collision before it can re-

absorb any radiation at the same frequency.

If there were no deflecting collisions and only

phase changing collisions (See I, Eq. (126)), (l/T) = 0

and A becomes

-1
A=Yab [ Yab+ 61P]

(104)

where 81 is the broadening factor per Torr from phase

changing collisions ( See I, Eq. (144) for definition of

6 = 61p). In that case the maximum intensity would have

a linear variation with pressure

Thus, if the tuning curves are measured as in Figure 5

with ' .constant, the existence and magnitude of the effect

of deflecting collisions can easily be determined. It is

not expected that the coefficient A ( Eq. (103)) will be

as simple as the pure velocity changing case, but the major

effects of deflecting collisions can nevertheless be

discerned.



(39)

The detailed features of the tuning dip will not

be discussed here, In general, the dip includes the

effects of phase changing collisions, The fine structure

determined from Eq. (101) will be useful when there

are only velocity-changing collisions present. This

might be the case in some molecular lasers.
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X. High Intensity Theory

Stenholm and Lamb1 3 have developed an extension of the

perturbation theory for applications to a high intensity

laser. They expressed the polarization as a.Fourier series

in harmonics of the spatial dependence of a single cavity

mode.

Using equations (14 a), (14b), and (15) a similar

theory can be developed which includes the effects of vel-

ocity-changing collisions. The equations of motion of the

microscopic polarization and population inversion as

defined by Eqi--(15) are

S(ZovtstO) = - 2PD/;~d~-(t-t') +e-p.*
( t - t ' ) ]

s.o t ~ o -l.2/)tt[ t'
S(z ,t't)- 2 (P ,/-)J'dtl[e +e

0

x sin[K(zo + S v(t)dt)]n(Zot',to)
t0

0°~~ ~(105a)

n(zot,to) = [AaeYa(t-to ) A be-Yb(t-to)]
0~~~ ~~~ -Ya 

(t
-')bY

(- '

+ l(E/h).t dteyt') + e-yb(t-t')]
2~~ t0

.t
X sin[K(zo + , v(t)dt)]s(z t''t°)

t
0 (105b)

Now express s(zo,t,to) and n(zo,t,to) in a Fourier series

in Kz
O
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n=o

s(z ot,to) = -iPN Z sn(t,to)exp(inKzo)

(106a)

n=f

n(Zo,t,to) = N Z dn(tto)exp(inKz)0 0 ~~~n=-co n o 
(106b)

The microscopic polarization and population inversion at

point z in the laser are (see Eq. (12) or (19))

t
s(z,t,to) = fdzo6(Z - z o - .r v(t)dt)s(zo,t,to ) .

to
~~~o ~(107a)

t
n(z,t, to) = Jdzo6(Z - zo - tv(t)dt)n(zo,t,to )

.-0 . ~(107b)

Performing the z integration of Eq~. (107) on
0

Eqs. (106) and (105) and substituting the resulting

Fourier expansions for s(zt,to) and n(z,t,to) into the
14

integral equations gives

t
-iZ Sn(t to)exp[inK(zof v(t)dt)]

t o
0

t t
-(PE/h)dtlt[e(t-t')+e-*(t-t' )J]sin[K(z- v(t)dt)]

t
X . dn(t',to)exp[inK(z-1 v(t)dt)]

t o

(108a)
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t
N Zdn(t t o)exp[inK(z-S v(t)dt)]

0

= [Aae-Ya(t-to) - Abe Yb(t-to)]

liE h t -Y(t-t') (- t'- -iN/h)j dt'[e +e-Yb(t tI)]sin[K(z-j v(t)dt)]
t tt
0

t
x E'..sn(t' ,to)exp[inK(z- tv(t)dt)]

t0 (108b)

Take the spatial averages of the left and right hand

sides of Eqs. (108) (as per the description of Eqs. (26)

and (29) respectively) with respect to the variables

t
Az = v(t)dt

t
0

ti
Azo = v(t)dt

t0

t
AZ = ftv(t)dt

ti

and integrate over intermediate velocities v' =v(t').
Writing the sine function in terms of exponentials,

Eqs. (108) reduce to

Sn(tto) einKzjd(Az)f(volv,Az,t-to)e-inKAz

: - (PE/h)f dt'sdv'[e (tt) + e-* (t ] (It

t

x 0 dn(tto)d(zo)f(olVZt-to)d(Az)f(v'vAzt-t

X {exp[i(n+l)Kz-inKAzo-i(n+l)KAz'] - exp[i(n-l)Kz-inKAz°

-i(n-l)KAz' ]

Ae Il
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Z dn(t,to ) ein KZ £d(Az)f(volv,Az,t-to)e- inKAz

= (1/N)[Aae Ya(t to ) - Abe Yb(t to )rd(Az)f(volv,Az,t-to )

1 (E/h) dt [eYa(t t) + e-Yb(t -t')] rdv'
t
0

x ~]sn(t ,to),rd(Azo)f(volv',AZot'-to).fd(Az' )f(v' !v,Azt,t-t')

X {exp[i(n+l)Kz-inKAz o-i(n+l)KAz'] - exp[i(n-l)Kz-inKAzo

-i(n-1)KAz' ]}

(109b)

Recalling Eq. .(30)

G (v Iv,t-t') = fd(Az)f(vt Iv,Az,t-tt) ei K/Z
x

Eqs. (109) become

inKz
D Sn(tto)G_ n(vo Ivt-to)einKz

t

t~- e- (t -
t
) +e

l
P*

( t
-
t '

)
~dv.E t ,to=- (PE/h) ftdt.I [ e +.(

t~~~~~~~ in(t '
0

x G_n(Vo[V',t'-to) { eiK( +
)z G-(n+l)(vlvvt-t'))

eiK(n-1)zG -(n-l)(v' Ivt-t )

(llOa)
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Z dn(t,t o ) G_n(Vo|V,t-to ) e i n K z

= (1/4)[AaeYa(t to ) A be-Yb(t-to) ]GO(VOIVt-to)

- ~ ~ ~ ~~ ~+ ebtt]fd ~D Sn(t'·to)1(PE/h)t'dt[e Ya(
t
-
t ' ) + e-yb ( t

-

tt)]d s (dv'
O

xGI n(VolV' t'-to) { e iK(n+ l)Z Go '( )v't- t')
·

X G VI ~~~~_iK(n-1)z G

_- (n l )(V'lvvt-t' ) }

(lnob)

As in the calculation in the weak signal theory, the macro-

scopic variables are found by averaging the microscopic

variables over all displacements and by integrating over all

initial excitation times. Thus,

t
S(VolVz,t ) = J dt o rd(Az)f(vovV,Azt-to)

X fdZo6(z-zo -AZ(t,to)) S(Zo,'t'to)

(111)

Applying Eq. (111) to the Fourier series on the left 

hand sides of Eqs. (110) gives

s(vvzt) = dt n(tto)Gn(volvtto)e
S(VolV, z't ) = dto FSn(t' to)G -n(volV, t-to)e inKz

(112a)
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Define the ,averages

Sn(V) = JdVoWm(vo)sn(vo V)

(116a)

dn(V) = jdVoWm(vo)dn(vo0 Iv)

(116b)

over initial velocities v0 to give

sn(v) = ¼(PE/h) fdv' [dn+l(v') -dnl()]

x [qn(V'lv,1V) + Qrn(v ll']a*)]

(117a)

dn(V) = Wm(V)SnO + ~(E/h)dv[Sn+l(V') -Snl(V')]

X [qn(V' v,ya) + Cn(VI lVYb)]

(117b)

In the absence of collisions, Eq. (83) gives

Qn(v'lv,a) = 6(vt-v) [a + inKy] 1

(118)

and Eqs. (117) become

sn(v) = ¼('E/h)[dn+l(v) - dnl(v)][(p+inKv) l+(p.*+inKv) 1

dn(v) = Wm(v)6nO + ~(PE/h)[Sn+l(v) - Snl(v)]

X [(ya+inKv) l+(yb+inKv)-1]

(119)

Equations (119) are essentially equivalent to Eqs (61) of

Ref. 13.

(46)
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From Eq. (117b), with collisions, the normalized

population inversion density as a function of velocity is

do (v) = Wm(v) + (PE/h) jdv'[sl(v') - sl(v')]

X [(O(V'lVeYa) + 'o(V'IV,yb)]

(120)

Expressing sl(v) and s_l(v) in terms of do(v) in Eq. (117)

neglecting d+2(v), and substituting back in Eq. (120) gives

the "rate equation approximation" for the population

inversion

do (v) = Wm(v) - [(PE)/(4h)]2 dv't do(v'')

x [+l(v' Iv',l) + +l(Ivt t Ivt ,*) +(+l--l)]

x [%0 (v' Iv,ya) + %(v' IV,Yb)]

(121)

The strong collision model (r = 0) is used in subsequent

calculations to most easily illustrate the possibility

of using Eq. (121). From Eq. (84) with r = 0

(±i(v,,Iv,~) = 6(v, - v')[p'OiKv'] 1

+ (l/T)Wm(,v')[t'TiKv'] l[IFiKv''] -I

x[l + ieZ(P',um)]'

qo(vtlv,ya) = 6(v'-v) Ya-1 + Wm(V)[Y Y ]: +Wm(V)[%~~a 

(122)

i

I

I

I

I
I

I

I
I

I

II
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Substituting (122) into Eq. (121) gives an integral

equation for do(v)

d(v) = Wm(v) - [(PE)/(4h)]
2
d0 (v)[ 1a + ]R(v)

[ (eE)/Q4.h) ] m(v) [ Ya Yb Ya - Yb

x Jdv'R(v')dO(V')

21
-[(PE)(4h)] (l/T)W(v)[ y ' + I¥ ]dvB(vJv)dO(V)

[(PE)/() (/T)aWm(v)[ b a b

m~ ~~¥ _a' Yb -Y
a

x fdv"fdv'Wm(v')B(v'Rv' )d (v')

(123)

where

R(v) = (2/yab')[X'(D-v+Kv) + '(c-v-Kv)]

B(v'v) =-[l+ieZ(1,um)] [ [(-iKv) ('.-i 0v') 1

+(1iI+iKv) !( t+iKv) 1] + C.c.

(124)

If there are no collisions, the solution of Eq. (123)

gives the familiar inhomogeneous saturation of the population

- inversion density ("hole burning"),

21 1 -1
do(v) = Wm(v)[ 1 + [(PE)/(4h)] (- a + - )R(v)]

(125)
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where (1/T) is to be set equal to zero in R(v).

Equation (123) can give some insight into how the

velocity profile of the population inversion is modified

by collisions. The second term on the r.h.s. of Eq. (123)

is like the usual saturation term but smaller by the factor

a + Yb'l )/(Ya + Yb .) The effect can be attributed

to atoms "knocked" out of the velocity v by collisions.,

The third term then represents the number of atoms "knocked"

into velocity v. Smith and Hansch 15 called this process

"cross-relaxation"and obtained an equation containing the

above two terms using the rate equation for the atomic

populations as the starting point.

The last two terms on the r.h.s. of Eq. (123), not

included in the analysis of Smith and Hansch, represent

removal and addition of atoms with dipole moments.$ A

low intensity solution of Eq. (123) can be obtained by

substituting Wm(v) for do(v) in the integrals on the

r.h.s. Thus, to first order in e and in the Doppler limit,

2 1 -1
do(v) - Wm(v) [1 + [(PE)/(4h)] ( , + b )R(v)]

x ( 1 - 4c[(PE)/(4h)] [(YaYa ')+(Ybyb)-i] /

X exp[-(W-v)2 /(Kum)2] - c[(PE)/(4h)]2 71/2

X R(v)[ + jexp[-(-v)2 /(K 2
a b -x[(-)/(KUm)2] ](126)
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Figure 7 is a plot of do(v) with Kum = 900 MHz and

co-v = Kum . The dominant effect of the collisions is am

reduction of the saturation terms. Figure 8 is a plot

of do(v) with c-v = 0. The dashed curve shows do(v)

using the equations of Smith and Hansch which is obtained

by omitting the last term on the r.h.s. of Eq. (126).



Figure Captions

1. Scattering in center of mass (c.m.) frame. Velocity

vcm is scattered through angle 0 and becomes vcm, The
A

unit vector 0 is in the direction of vi'; the unit vectorcm

p is parallel to Vcm (and the relative velocity); the unit

vector q is perpendicular to Vcm.

2. Intermolecular potentials. The solid curve is a typical

intermolecular potential and the dashed curve is a simplified

version used to calculate W(vjv'). Note that the coeficient

B used in the text is Ar 6 in the Figure.
0

3a. Numerical-result for W(vo0 v) for hard sphere collisions

with (m/M) = 1.0. Five thousand (5000) numerical collisions

were used to obtain this result.

3b. Numerical result for W(Volv) for hard sphere collisions

with (m/M) = 4.0. Five thousand (5000) numerical collisions

were used to obtain this result.

4. (sm/0) and F as a function of (m/M) for hard sphere

collisions based on 5000 encounters.

5. Intensity (I) as a function of detuning [(w-v)/(Kum)]

for various values of the pressure. For this plot,

Ku = 5000 M Hz, (l/T1 ) = 58 M Hz, Ya = 17.7 M Hz,

Yb = 8.3 M Hz.

6. Imax and Idip for tuning curves as a function of pressure.

The parameters are the same as in Fig. 5.
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Figure Captions ..

7. d0 plotted as a function of [v/(Kum)] from Eq. (126).

The solid curve is the case of no collisions and the

dashed curved has p=.25 Torr with co-v = Kum. The Doppler

width, Ku = 900 M Hz.
m

8. do plotted as a function of [v/(Kum)] from Eq. (126) with

a-v = 0.0. The top curve is the case of no collisions and

the bottom curves have p = .25 Torr. The dashed curve

is the Smith and Hansch result. The Doppler width, Ku
m

= 900

M Hz.
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